ConstantParameter¶

class
zfit.param.
ConstantParameter
(*args, **kwargs)[source]¶ Bases:
zfit.core.parameter.OverloadableMixin
,zfit.core.parameter.ZfitParameterMixin
,zfit.core.parameter.BaseParameter
Constant parameter. Value cannot change.
 Parameters
name –
value –
dtype –

class
SaveSliceInfo
(full_name=None, full_shape=None, var_offset=None, var_shape=None, save_slice_info_def=None, import_scope=None)¶ Bases:
object
Information on how to save this Variable as a slice.
Provides internal support for saving variables as slices of a larger variable. This API is not public and is subject to change.
Available properties:
full_name
full_shape
var_offset
var_shape
Create a SaveSliceInfo.
 Parameters
full_name – Name of the full variable of which this Variable is a slice.
full_shape – Shape of the full variable, as a list of int.
var_offset – Offset of this Variable into the full variable, as a list of int.
var_shape – Shape of this Variable, as a list of int.
save_slice_info_def – SaveSliceInfoDef protocol buffer. If not None, recreates the SaveSliceInfo object its contents. save_slice_info_def and other arguments are mutually exclusive.
import_scope – Optional string. Name scope to add. Only used when initializing from protocol buffer.

property
spec
¶ Computes the spec string used for saving.

to_proto
(export_scope=None)¶ Returns a SaveSliceInfoDef() proto.
 Parameters
export_scope – Optional string. Name scope to remove.
 Returns
A SaveSliceInfoDef protocol buffer, or None if the Variable is not in the specified name scope.

__iter__
()¶ Dummy method to prevent iteration.
Do not call.
NOTE(mrry): If we register __getitem__ as an overloaded operator, Python will valiantly attempt to iterate over the variable’s Tensor from 0 to infinity. Declaring this method prevents this unintended behavior.
 Raises
TypeError – when invoked.

__ne__
(other)¶ Compares two variables elementwise for equality.

add_cache_deps
(cache_deps, allow_non_cachable=True)¶ Add dependencies that render the cache invalid if they change.
 Parameters
cache_deps (
Union
[ForwardRef
,Iterable
[ForwardRef
]]) –allow_non_cachable (
bool
) – If True, allow cache_dependents to be noncachables. If False, any cache_dependents that is not a ZfitCachable will raise an error.
 Raises
TypeError – if one of the cache_dependents is not a ZfitCachable _and_ allow_non_cachable if False.

assign
(value, use_locking=False, name=None, read_value=True)¶ Assigns a new value to the variable.
This is essentially a shortcut for assign(self, value).
 Parameters
value – A Tensor. The new value for this variable.
use_locking – If True, use locking during the assignment.
name – The name of the operation to be created
read_value – if True, will return something which evaluates to the new value of the variable; if False will return the assign op.
 Returns
The updated variable. If read_value is false, instead returns None in Eager mode and the assign op in graph mode.

assign_add
(delta, use_locking=False, name=None, read_value=True)¶ Adds a value to this variable.
This is essentially a shortcut for assign_add(self, delta).
 Parameters
delta – A Tensor. The value to add to this variable.
use_locking – If True, use locking during the operation.
name – The name of the operation to be created
read_value – if True, will return something which evaluates to the new value of the variable; if False will return the assign op.
 Returns
The updated variable. If read_value is false, instead returns None in Eager mode and the assign op in graph mode.

assign_sub
(delta, use_locking=False, name=None, read_value=True)¶ Subtracts a value from this variable.
This is essentially a shortcut for assign_sub(self, delta).
 Parameters
delta – A Tensor. The value to subtract from this variable.
use_locking – If True, use locking during the operation.
name – The name of the operation to be created
read_value – if True, will return something which evaluates to the new value of the variable; if False will return the assign op.
 Returns
The updated variable. If read_value is false, instead returns None in Eager mode and the assign op in graph mode.

batch_scatter_update
(sparse_delta, use_locking=False, name=None)¶ Assigns tf.IndexedSlices to this variable batchwise.
Analogous to batch_gather. This assumes that this variable and the sparse_delta IndexedSlices have a series of leading dimensions that are the same for all of them, and the updates are performed on the last dimension of indices. In other words, the dimensions should be the following:
num_prefix_dims = sparse_delta.indices.ndims  1 batch_dim = num_prefix_dims + 1 `sparse_delta.updates.shape = sparse_delta.indices.shape + var.shape[
batch_dim:]`
where
sparse_delta.updates.shape[:num_prefix_dims] == sparse_delta.indices.shape[:num_prefix_dims] == var.shape[:num_prefix_dims]
And the operation performed can be expressed as:
 `var[i_1, …, i_n,
 sparse_delta.indices[i_1, …, i_n, j]] = sparse_delta.updates[
i_1, …, i_n, j]`
When sparse_delta.indices is a 1D tensor, this operation is equivalent to scatter_update.
To avoid this operation one can looping over the first ndims of the variable and using scatter_update on the subtensors that result of slicing the first dimension. This is a valid option for ndims = 1, but less efficient than this implementation.
 Parameters
sparse_delta – tf.IndexedSlices to be assigned to this variable.
use_locking – If True, use locking during the operation.
name – the name of the operation.
 Returns
The updated variable.
 Raises
TypeError – if sparse_delta is not an IndexedSlices.

property
constraint
¶ Returns the constraint function associated with this variable.
 Returns
The constraint function that was passed to the variable constructor. Can be None if no constraint was passed.

count_up_to
(limit)¶ Increments this variable until it reaches limit. (deprecated)
Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Prefer Dataset.range instead.
When that Op is run it tries to increment the variable by 1. If incrementing the variable would bring it above limit then the Op raises the exception OutOfRangeError.
If no error is raised, the Op outputs the value of the variable before the increment.
This is essentially a shortcut for count_up_to(self, limit).
 Parameters
limit – value at which incrementing the variable raises an error.
 Returns
A Tensor that will hold the variable value before the increment. If no other Op modifies this variable, the values produced will all be distinct.

property
device
¶ The device of this variable.

property
dtype
¶ The dtype of the object
 Return type
DType

eval
(session=None)¶ In a session, computes and returns the value of this variable.
This is not a graph construction method, it does not add ops to the graph.
This convenience method requires a session where the graph containing this variable has been launched. If no session is passed, the default session is used. See tf.compat.v1.Session for more information on launching a graph and on sessions.
```python v = tf.Variable([1, 2]) init = tf.compat.v1.global_variables_initializer()
 with tf.compat.v1.Session() as sess:
sess.run(init) # Usage passing the session explicitly. print(v.eval(sess)) # Usage with the default session. The ‘with’ block # above makes ‘sess’ the default session. print(v.eval())
 Parameters
session – The session to use to evaluate this variable. If none, the default session is used.
 Returns
A numpy ndarray with a copy of the value of this variable.

experimental_ref
()¶ DEPRECATED FUNCTION
Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use ref() instead.

static
from_proto
(variable_def, import_scope=None)¶ Returns a Variable object created from variable_def.

gather_nd
(indices, name=None)¶ Gather slices from params into a Tensor with shape specified by indices.
See tf.gather_nd for details.
 Parameters
indices – A Tensor. Must be one of the following types: int32, int64. Index tensor.
name – A name for the operation (optional).
 Returns
A Tensor. Has the same type as params.

get_cache_deps
(only_floating=True)¶ Return a set of all independent
Parameter
that this object depends on.

get_dependencies
(only_floating=True)¶ DEPRECATED FUNCTION
Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use get_params instead if you want to retrieve the independent parameters or get_cache_deps in case you need the numerical cache dependents (advanced).
 Return type
OrderedSet

get_params
(floating=True, is_yield=None, extract_independent=True, only_floating=<class 'zfit.util.checks.NotSpecified'>)¶ Recursively collect parameters that this object depends on according to the filter criteria.
 Which parameters should be included can be steered using the arguments as a filter.
 None: do not filter on this. E.g. floating=None will return parameters that are floating as well as
parameters that are fixed.
True: only return parameters that fulfil this criterion
 False: only return parameters that do not fulfil this criterion. E.g. floating=False will return
only parameters that are not floating.
 Parameters
floating (
Optional
[bool
]) – if a parameter is floating, e.g. iffloating()
returns Trueis_yield (
Optional
[bool
]) – if a parameter is a yield of the _current_ model. This won’t be applied recursively, but may include yields if they do also represent a parameter parametrizing the shape. So if the yield of the current model depends on other yields (or also nonyields), this will be included. If, however, just submodels depend on a yield (as their yield) and it is not correlated to the output of our model, they won’t be included.extract_independent (
Optional
[bool
]) – If the parameter is an independent parameter, i.e. if it is a ZfitIndependentParameter.
 Return type

get_shape
()¶ Alias of Variable.shape.

property
graph
¶ The Graph of this variable.

property
initial_value
¶ Returns the Tensor used as the initial value for the variable.
Note that this is different from initialized_value() which runs the op that initializes the variable before returning its value. This method returns the tensor that is used by the op that initializes the variable.
 Returns
A Tensor.

initialized_value
()¶ Returns the value of the initialized variable. (deprecated)
Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts.
You should use this instead of the variable itself to initialize another variable with a value that depends on the value of this variable.
`python # Initialize 'v' with a random tensor. v = tf.Variable(tf.random.truncated_normal([10, 40])) # Use `initialized_value` to guarantee that `v` has been # initialized before its value is used to initialize `w`. # The random values are picked only once. w = tf.Variable(v.initialized_value() * 2.0) `
 Returns
A Tensor holding the value of this variable after its initializer has run.

property
initializer
¶ The initializer operation for this variable.

load
(value, session=None)¶ Load new value into this variable. (deprecated)
Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Prefer Variable.assign which has equivalent behavior in 2.X.
Writes new value to variable’s memory. Doesn’t add ops to the graph.
This convenience method requires a session where the graph containing this variable has been launched. If no session is passed, the default session is used. See tf.compat.v1.Session for more information on launching a graph and on sessions.
```python v = tf.Variable([1, 2]) init = tf.compat.v1.global_variables_initializer()
 with tf.compat.v1.Session() as sess:
sess.run(init) # Usage passing the session explicitly. v.load([2, 3], sess) print(v.eval(sess)) # prints [2 3] # Usage with the default session. The ‘with’ block # above makes ‘sess’ the default session. v.load([3, 4], sess) print(v.eval()) # prints [3 4]
 Parameters
value – New variable value
session – The session to use to evaluate this variable. If none, the default session is used.
 Raises
ValueError – Session is not passed and no default session

property
op
¶ The Operation of this variable.

ref
()¶ Returns a hashable reference object to this Variable.
The primary use case for this API is to put variables in a set/dictionary. We can’t put variables in a set/dictionary as variable.__hash__() is no longer available starting Tensorflow 2.0.
The following will raise an exception starting 2.0
>>> x = tf.Variable(5) >>> y = tf.Variable(10) >>> z = tf.Variable(10) >>> variable_set = {x, y, z} Traceback (most recent call last): ... TypeError: Variable is unhashable. Instead, use tensor.ref() as the key. >>> variable_dict = {x: 'five', y: 'ten'} Traceback (most recent call last): ... TypeError: Variable is unhashable. Instead, use tensor.ref() as the key.
Instead, we can use variable.ref().
>>> variable_set = {x.ref(), y.ref(), z.ref()} >>> x.ref() in variable_set True >>> variable_dict = {x.ref(): 'five', y.ref(): 'ten', z.ref(): 'ten'} >>> variable_dict[y.ref()] 'ten'
Also, the reference object provides .deref() function that returns the original Variable.
>>> x = tf.Variable(5) >>> x.ref().deref() <tf.Variable 'Variable:0' shape=() dtype=int32, numpy=5>

register_cacher
(cacher)¶ Register a cacher that caches values produces by this instance; a dependent.
 Parameters
cacher (
Union
[ForwardRef
,Iterable
[ForwardRef
]]) –

reset_cache_self
()¶ Clear the cache of self and all dependent cachers.

scatter_add
(sparse_delta, use_locking=False, name=None)¶ Adds tf.IndexedSlices to this variable.
 Parameters
sparse_delta – tf.IndexedSlices to be added to this variable.
use_locking – If True, use locking during the operation.
name – the name of the operation.
 Returns
The updated variable.
 Raises
TypeError – if sparse_delta is not an IndexedSlices.

scatter_div
(sparse_delta, use_locking=False, name=None)¶ Divide this variable by tf.IndexedSlices.
 Parameters
sparse_delta – tf.IndexedSlices to divide this variable by.
use_locking – If True, use locking during the operation.
name – the name of the operation.
 Returns
The updated variable.
 Raises
TypeError – if sparse_delta is not an IndexedSlices.

scatter_max
(sparse_delta, use_locking=False, name=None)¶ Updates this variable with the max of tf.IndexedSlices and itself.
 Parameters
sparse_delta – tf.IndexedSlices to use as an argument of max with this variable.
use_locking – If True, use locking during the operation.
name – the name of the operation.
 Returns
The updated variable.
 Raises
TypeError – if sparse_delta is not an IndexedSlices.

scatter_min
(sparse_delta, use_locking=False, name=None)¶ Updates this variable with the min of tf.IndexedSlices and itself.
 Parameters
sparse_delta – tf.IndexedSlices to use as an argument of min with this variable.
use_locking – If True, use locking during the operation.
name – the name of the operation.
 Returns
The updated variable.
 Raises
TypeError – if sparse_delta is not an IndexedSlices.

scatter_mul
(sparse_delta, use_locking=False, name=None)¶ Multiply this variable by tf.IndexedSlices.
 Parameters
sparse_delta – tf.IndexedSlices to multiply this variable by.
use_locking – If True, use locking during the operation.
name – the name of the operation.
 Returns
The updated variable.
 Raises
TypeError – if sparse_delta is not an IndexedSlices.

scatter_nd_add
(indices, updates, name=None)¶ Applies sparse addition to individual values or slices in a Variable.
The Variable has rank P and indices is a Tensor of rank Q.
indices must be integer tensor, containing indices into self. It must be shape [d_0, …, d_{Q2}, K] where 0 < K <= P.
The innermost dimension of indices (with length K) corresponds to indices into elements (if K = P) or slices (if K < P) along the `K`th dimension of self.
updates is Tensor of rank Q1+PK with shape:
` [d_0, ..., d_{Q2}, self.shape[K], ..., self.shape[P1]]. `
For example, say we want to add 4 scattered elements to a rank1 tensor to 8 elements. In Python, that update would look like this:
 ```python
v = tf.Variable([1, 2, 3, 4, 5, 6, 7, 8]) indices = tf.constant([[4], [3], [1] ,[7]]) updates = tf.constant([9, 10, 11, 12]) add = v.scatter_nd_add(indices, updates) with tf.compat.v1.Session() as sess:
print sess.run(add)
The resulting update to v would look like this:
[1, 13, 3, 14, 14, 6, 7, 20]
See tf.scatter_nd for more details about how to make updates to slices.
 Parameters
indices – The indices to be used in the operation.
updates – The values to be used in the operation.
name – the name of the operation.
 Returns
The updated variable.

scatter_nd_sub
(indices, updates, name=None)¶ Applies sparse subtraction to individual values or slices in a Variable.
Assuming the variable has rank P and indices is a Tensor of rank Q.
indices must be integer tensor, containing indices into self. It must be shape [d_0, …, d_{Q2}, K] where 0 < K <= P.
The innermost dimension of indices (with length K) corresponds to indices into elements (if K = P) or slices (if K < P) along the `K`th dimension of self.
updates is Tensor of rank Q1+PK with shape:
` [d_0, ..., d_{Q2}, self.shape[K], ..., self.shape[P1]]. `
For example, say we want to add 4 scattered elements to a rank1 tensor to 8 elements. In Python, that update would look like this:
 ```python
v = tf.Variable([1, 2, 3, 4, 5, 6, 7, 8]) indices = tf.constant([[4], [3], [1] ,[7]]) updates = tf.constant([9, 10, 11, 12]) op = v.scatter_nd_sub(indices, updates) with tf.compat.v1.Session() as sess:
print sess.run(op)
The resulting update to v would look like this:
[1, 9, 3, 6, 6, 6, 7, 4]
See tf.scatter_nd for more details about how to make updates to slices.
 Parameters
indices – The indices to be used in the operation.
updates – The values to be used in the operation.
name – the name of the operation.
 Returns
The updated variable.

scatter_nd_update
(indices, updates, name=None)¶ Applies sparse assignment to individual values or slices in a Variable.
The Variable has rank P and indices is a Tensor of rank Q.
indices must be integer tensor, containing indices into self. It must be shape [d_0, …, d_{Q2}, K] where 0 < K <= P.
The innermost dimension of indices (with length K) corresponds to indices into elements (if K = P) or slices (if K < P) along the `K`th dimension of self.
updates is Tensor of rank Q1+PK with shape:
` [d_0, ..., d_{Q2}, self.shape[K], ..., self.shape[P1]]. `
For example, say we want to add 4 scattered elements to a rank1 tensor to 8 elements. In Python, that update would look like this:
 ```python
v = tf.Variable([1, 2, 3, 4, 5, 6, 7, 8]) indices = tf.constant([[4], [3], [1] ,[7]]) updates = tf.constant([9, 10, 11, 12]) op = v.scatter_nd_assign(indices, updates) with tf.compat.v1.Session() as sess:
print sess.run(op)
The resulting update to v would look like this:
[1, 11, 3, 10, 9, 6, 7, 12]
See tf.scatter_nd for more details about how to make updates to slices.
 Parameters
indices – The indices to be used in the operation.
updates – The values to be used in the operation.
name – the name of the operation.
 Returns
The updated variable.

scatter_sub
(sparse_delta, use_locking=False, name=None)¶ Subtracts tf.IndexedSlices from this variable.
 Parameters
sparse_delta – tf.IndexedSlices to be subtracted from this variable.
use_locking – If True, use locking during the operation.
name – the name of the operation.
 Returns
The updated variable.
 Raises
TypeError – if sparse_delta is not an IndexedSlices.

scatter_update
(sparse_delta, use_locking=False, name=None)¶ Assigns tf.IndexedSlices to this variable.
 Parameters
sparse_delta – tf.IndexedSlices to be assigned to this variable.
use_locking – If True, use locking during the operation.
name – the name of the operation.
 Returns
The updated variable.
 Raises
TypeError – if sparse_delta is not an IndexedSlices.

set_shape
(shape)¶ Overrides the shape for this variable.
 Parameters
shape – the TensorShape representing the overridden shape.

sparse_read
(indices, name=None)¶ Gather slices from params axis axis according to indices.
This function supports a subset of tf.gather, see tf.gather for details on usage.
 Parameters
indices – The index Tensor. Must be one of the following types: int32, int64. Must be in range [0, params.shape[axis]).
name – A name for the operation (optional).
 Returns
A Tensor. Has the same type as params.

to_proto
(export_scope=None)¶ Converts a Variable to a VariableDef protocol buffer.
 Parameters
export_scope – Optional string. Name scope to remove.
 Returns
A VariableDef protocol buffer, or None if the Variable is not in the specified name scope.