

 	
 What’s new?

	
 Getting started

	
 API reference

	
 Project

	
 Ask a question

 	

 Edit this page

zfit.core.interfaces module¶

	
class zfit.core.interfaces.ZfitObject[source]¶
	Bases: abc.ABC

	
class zfit.core.interfaces.ZfitDimensional[source]¶
	Bases: zfit.core.interfaces.ZfitObject

	
abstract property obs¶
	Return the observables, string identifier for the coordinate system.

	Return type
	Optional[Tuple[str, …]]

	
abstract property axes¶
	Return the axes, integer based identifier(indices) for the coordinate system.

	Return type
	Optional[Tuple[int]]

	
abstract property n_obs¶
	Return the number of observables, the dimensionality. Corresponds to the last dimension.

	Return type
	int

	
class zfit.core.interfaces.ZfitOrderableDimensional[source]¶
	Bases: zfit.core.interfaces.ZfitDimensional

	
abstract with_obs(obs, allow_superset=True, allow_subset=True)[source]¶
	Create a new instance that has obs; sorted by or set or dropped.

The behavior is as follows:

	obs are already set:
* input obs are None: the observables will be dropped. If no axes are set, an error

will be raised, as no coordinates will be assigned to this instance anymore.

	input obs are not None: the instance will be sorted by the incoming obs. If axes or other
objects have an associated order (e.g. data, limits,…), they will be reordered as well.
If a strict subset is given (and allow_subset is True), only a subset will be returned.
This can be used to take a subspace of limits, data etc.
If a strict superset is given (and allow_superset is True), the obs will be sorted accordingly as
if the obs not contained in the instances obs were not in the input obs.

	obs are not set:
* if the input obs are None, the same object is returned.
* if the input obs are not None, they will be set as-is and now correspond to the already

existing axes in the object.

	Parameters
		obs (Union[str, Iterable[str], Space, None]) – Observables to sort/associate this instance with

	allow_superset (bool) – if False and a strict superset of the own observables is given, an error

	raised. (is) –

	allow_subset (bool) – if False and a strict subset of the own observables is given, an error

	raised. –

	Return type
	ZfitOrderableDimensional

	Returns
	A copy of the object with the new ordering/observables

	Raises
		CoordinatesUnderdefinedError – if obs is None and the instance does not have axes

	ObsIncompatibleError – if obs is a superset and allow_superset is False or a subset and
 allow_allow_subset is False

	
abstract with_axes(axes, allow_superset=True, allow_subset=True)[source]¶
	Create a new instance that has axes; sorted by or set or dropped.

The behavior is as follows:

	axes are already set:
* input axes are None: the axes will be dropped. If no observables are set, an error

will be raised, as no coordinates will be assigned to this instance anymore.

	input axes are not None: the instance will be sorted by the incoming axes. If obs or other
objects have an associated order (e.g. data, limits,…), they will be reordered as well.
If a strict subset is given (and allow_subset is True), only a subset will be returned. This can
be used to retrieve a subspace of limits, data etc.
If a strict superset is given (and allow_superset is True), the axes will be sorted accordingly as
if the axes not contained in the instances axes were not present in the input axes.

	axes are not set:
* if the input axes are None, the same object is returned.
* if the input axes are not None, they will be set as-is and now correspond to the already

existing obs in the object.

	Parameters
		axes (Union[int, Iterable[int], None]) – Axes to sort/associate this instance with

	allow_superset (bool) – if False and a strict superset of the own axeservables is given, an error

	raised. (is) –

	allow_subset (bool) – if False and a strict subset of the own axeservables is given, an error

	raised. –

	Return type
	ZfitOrderableDimensional

	Returns
	A copy of the object with the new ordering/axes

	Raises
		CoordinatesUnderdefinedError – if obs is None and the instance does not have axes

	AxesIncompatibleError – if axes is a superset and allow_superset is False or a subset and
 allow_allow_subset is False

	
abstract with_autofill_axes(overwrite=False)[source]¶
	Overwrite the axes of the current object with axes corresponding to range(len(n_obs)).

This effectively fills with (0, 1, 2,…) and can be used mostly when an object enters a PDF or
similar. overwrite allows to remove the axis first in case there are already some set.

object.obs -> ('x', 'z', 'y')
object.axes -> None

object.with_autofill_axes()

object.obs -> ('x', 'z', 'y')
object.axes -> (0, 1, 2)

	Parameters
	overwrite (bool) – If axes are already set, replace the axes with the autofilled ones.
If axes is already set and overwrite is False, raise an error.

	Return type
	ZfitOrderableDimensional

	Returns
	The object with the new axes

	Raises
	AxesIncompatibleError – if the axes are already set and overwrite is False.

	
abstract reorder_x(x, *, x_obs=None, x_axes=None, func_obs=None, func_axes=None)[source]¶
	Reorder x in the last dimension either according to its own obs or assuming a function ordered with func_obs.

There are two obs or axes around: the one associated with this Coordinate object and the one associated with x.
If x_obs or x_axes is given, then this is assumed to be the obs resp. the axes of x and x will be reordered
according to self.obs resp. self.axes.

If func_obs resp. func_axes is given, then x is assumed to have self.obs resp. self.axes and will be
reordered to align with a function ordered with func_obs resp. func_axes.

Switching func_obs for x_obs resp. func_axes for x_axes inverts the reordering of x.

	Parameters
		x (Union[Tensor, ndarray]) – Tensor to be reordered, last dimension should be n_obs resp. n_axes

	x_obs (Union[str, Iterable[str], Space, None]) – Observables associated with x. If both, x_obs and x_axes are given, this has precedency over the
latter.

	x_axes (Union[int, Iterable[int], None]) – Axes associated with x.

	func_obs (Union[str, Iterable[str], Space, None]) – Observables associated with a function that x will be given to. Reorders x accordingly and assumes
self.obs to be the obs of x. If both, func_obs and func_axes are given, this has precedency over the
latter.

	func_axes (Union[int, Iterable[int], None]) – Axe associated with a function that x will be given to. Reorders x accordingly and assumes
self.axes to be the axes of x.

	Return type
	Union[ndarray, Tensor]

	Returns
	The reordered array-like object

	
abstract get_reorder_indices(obs=None, axes=None)[source]¶
	Indices that would order the instances obs as obs respectively the instances axes as axes.

	Parameters
		obs (Union[str, Iterable[str], Space, None]) – Observables that the instances obs should be ordered to. Does not reorder, but just
return the indices that could be used to reorder.

	axes (Union[int, Iterable[int], None]) – Axes that the instances obs should be ordered to. Does not reorder, but just
return the indices that could be used to reorder.

	Return type
	Tuple[int]

	Returns
	New indices that would reorder the instances obs to be obs respectively axes.

	Raises
	CoordinatesUnderdefinedError – If neither obs nor axes is given

	
abstract property axes¶
	Return the axes, integer based identifier(indices) for the coordinate system.

	Return type
	Optional[Tuple[int]]

	
abstract property n_obs¶
	Return the number of observables, the dimensionality. Corresponds to the last dimension.

	Return type
	int

	
abstract property obs¶
	Return the observables, string identifier for the coordinate system.

	Return type
	Optional[Tuple[str, …]]

	
class zfit.core.interfaces.ZfitData[source]¶
	Bases: zfit.core.interfaces.ZfitDimensional

	
abstract value(obs=None)[source]¶
		Return type
	Union[float, Tensor]

	
abstract sort_by_obs(obs, allow_superset=True)[source]¶
	

	
abstract sort_by_axes(axes, allow_superset=True)[source]¶
	

	
abstract property weights¶
	

	
abstract property axes¶
	Return the axes, integer based identifier(indices) for the coordinate system.

	Return type
	Optional[Tuple[int]]

	
abstract property n_obs¶
	Return the number of observables, the dimensionality. Corresponds to the last dimension.

	Return type
	int

	
abstract property obs¶
	Return the observables, string identifier for the coordinate system.

	Return type
	Optional[Tuple[str, …]]

	
class zfit.core.interfaces.ZfitLimit[source]¶
	Bases: abc.ABC

	
abstract property rect_limits¶
	Return the rectangular limits as np.ndarray``tf.Tensor if they are set and not false.

The rectangular limits can be used for sampling. They do not in general represent the limits
of the object as a functional limit can be set and to check if something is inside the limits,
the method inside() should be used.

In order to test if the limits are False or None, it is recommended to use the appropriate methods
limits_are_false and limits_are_set.

	Return type
	Tuple[Union[ndarray, Tensor, float], Union[ndarray, Tensor, float]]

	Returns
	The lower and upper limits.

	Raises
	LimitsNotSpecifiedError – If there are not limits set or they are False.

	
abstract property rect_limits_np¶
	Return the rectangular limits as np.ndarray. Raise error if not possible.

Rectangular limits are returned as numpy arrays which can be useful when doing checks that do not
need to be involved in the computation later on as they allow direct interaction with Python as
compared to tf.Tensor inside a graph function.

In order to test if the limits are False or None, it is recommended to use the appropriate methods
limits_are_false and limits_are_set.

	Return type
	Tuple[ndarray, ndarray]

	Returns
	
	A tuple of two np.ndarray with shape (1, n_obs) typically. The last
	dimension is always n_obs, the first can be vectorized. This allows unstacking
with z.unstack_x() as can be done with data.

	Raises
		CannotConvertToNumpyError – In case the conversion fails.

	LimitsNotSpecifiedError – If the limits are not set or are false

	
abstract property rect_lower¶
	The lower, rectangular limits, equivalent to rect_limits[0] with shape (…, n_obs)

	Return type
	Union[ndarray, Tensor, float]

	Returns
	The lower, rectangular limits as np.ndarray or tf.Tensor

	Raises
	LimitsNotSpecifiedError – If the limits are not set or are false

	
abstract property rect_upper¶
	The upper, rectangular limits, equivalent to rect_limits[1] with shape (…, n_obs)

	Return type
	Union[ndarray, Tensor, float]

	Returns
	The upper, rectangular limits as np.ndarray or tf.Tensor

	Raises
	LimitsNotSpecifiedError – If the limits are not set or are false

	
abstract rect_area()[source]¶
	Calculate the total rectangular area of all the limits and axes. Useful, for example, for MC integration.

	Return type
	Union[float, ndarray, Tensor]

	
abstract inside(x, guarantee_limits=False)[source]¶
	Test if x is inside the limits.

This function should be used to test if values are inside the limits. If the given x is already inside
the rectangular limits, e.g. because it was sampled from within them

	Parameters
		x (Union[ndarray, Tensor, Data]) – Values to be checked whether they are inside of the limits. The shape is expected to have the last
dimension equal to n_obs.

	guarantee_limits (bool) – Guarantee that the values are already inside the rectangular limits.

	Return type
	Union[ndarray, Tensor, Data]

	Returns
	
	Return a boolean tensor-like object with the same shape as the input x except of the
	last dimension removed.

	
abstract filter(x, guarantee_limits=False, axis=None)[source]¶
	Filter x by removing the elements along axis that are not inside the limits.

This is similar to tf.boolean_mask.

	Parameters
		x (Union[ndarray, Tensor, Data]) – Values to be checked whether they are inside of the limits. If not, the corresonding element (in the
specified axis) is removed. The shape is expected to have the last dimension equal to n_obs.

	guarantee_limits (bool) – Guarantee that the values are already inside the rectangular limits.

	axis (Optional[int]) – The axis to remove the elements from. Defaults to 0.

	Return type
	Union[ndarray, Tensor]

	Returns
	
	Return an object with the same shape as x except that along axis elements have been
	removed.

	
abstract property has_rect_limits¶
	If there are limits and whether they are rectangular.

	Return type
	bool

	
property rect_limits_are_tensors¶
	Return True if the rectangular limits are tensors.

If a limit with tensors is evaluated inside a graph context, comparison operations will fail.

	Return type
	bool

	Returns
	If the rectangular limits are tensors.

	
abstract property limits_are_set¶
	If the limits have been set to a limit or are False.

	Return type
	bool

	Returns
	Whether the limits have been set or not.

	
abstract property limits_are_false¶
	Returns if the limits have been set to False, so the object on purpose does not contain limits.

	Return type
	bool

	
abstract property has_limits¶
	Whether there are limits set and they are not false.

	Return type
	bool

	
get_subspace(*_, **__)[source]¶
	

	
abstract property n_obs¶
	Dimensionality, the number of observables, of the limits. Equals to the last axis in rectangular limits.

	Return type
	int

	Returns
	Dimensionality of the limits.

	
property n_events¶
	Shape of the first dimension, usually reflects the number of events.

	Return type
	Optional[int]

	Returns
	
	Return the number of events, the dimension of the first shape. If this is > 1 or None,
	it’s vectorized.

	
abstract equal(other, allow_graph)[source]¶
	Compare the limits on equality. For ANY objects, this also returns true.

If called inside a graph context and the limits are tensors, this will return a symbolic tf.Tensor.

	Return type
	Union[bool, Tensor]

	Returns
	Result of the comparison

	Raises
	IllegalInGraphModeError – it the comparison happens with tensors in a graph context.

	
abstract __eq__(other)[source]¶
	Compares two Limits for equality without graph mode allowed.
:raises IllegalInGraphModeError: it the comparison happens with tensors in a graph context.

	Return type
	bool

	
abstract less_equal(other, allow_graph=True)[source]¶
	Set-like comparison for compatibility. If an object is less_equal to another, the limits are combatible.

This can be used to determine whether a fitting range specification can handle another limit.

If called inside a graph context and the limits are tensors, this will return a symbolic tf.Tensor.

	Parameters
		other (object) – Any other object to compare with

	allow_graph (bool) – If False and the function returns a symbolic tensor, raise IllegalInGraphModeError instead.

	Return type
	Union[bool, Tensor]

	Returns
	Result of the comparison

	Raises
	IllegalInGraphModeError – it the comparison happens with tensors in a graph context.

	
abstract __le__(other)[source]¶
	Set-like comparison for compatibility. If an object is less_equal to another, the limits are combatible.

This can be used to determine whether a fitting range specification can handle another limit.

	Return type
	bool

	Returns
	Result of the comparison

	Raises
	IllegalInGraphModeError – it the comparison happens with tensors in a graph context.

	
abstract get_sublimits()[source]¶
	Splits itself into multiple sublimits with smaller n_obs.

If this is not possible, if the limits are not rectangular, just returns itself.

	Returns
	The sublimits if it was able to split.

	
class zfit.core.interfaces.ZfitSpace[source]¶
	Bases: zfit.core.interfaces.ZfitLimit, zfit.core.interfaces.ZfitOrderableDimensional, zfit.core.interfaces.ZfitObject

	
abstract property n_limits¶
	Return the number of limits.

	Return type
	int

	
abstract property limits¶
	Return the tuple(lower, upper).

	Return type
	Tuple[Union[ndarray, Tensor, None, bool], Union[ndarray, Tensor, None, bool]]

	
abstract property lower¶
	Return the lower limits.

	Return type
	Union[ndarray, Tensor, None, bool]

	
abstract property upper¶
	Return the upper limits.

	Return type
	Union[ndarray, Tensor, None, bool]

	
abstract area()[source]¶
	Return the total area of all the limits and axes. Useful, for example, for MC integration.

	Return type
	float

	
abstract with_limits(limits=None, rect_limits=None, name=None)[source]¶
	Return a copy of the space with the new limits (and the new name).

	Parameters
		limits (Union[ZfitLimit, Tensor, ndarray, Iterable[float], float, Tuple[float], List[float], bool, None]) – Limits to use. Can be rectangular, a function (requires to also specify rect_limits
or an instance of ZfitLimit.

	rect_limits (Union[Tensor, ndarray, Iterable[float], float, Tuple[float], List[float], None]) – Rectangular limits that will be assigned with the instance

	name (Optional[str]) – Human readable name

	Return type
	ZfitSpace

	Returns
	Copy of the current object with the new limits.

	
abstract get_subspace(obs, axes, name)[source]¶
	Create a Space consisting of only a subset of the obs/axes (only one allowed).

	Parameters
		obs –

	axes –

	name –

Returns:

	
abstract with_coords(coords, allow_superset=True, allow_subset=True)[source]¶
	Create a new Space with reordered observables and/or axes.

The behavior is that _at least one coordinate (obs or axes) has to be set in both instances
(the space itself or in coords). If both match, observables is taken as the defining coordinate.
The space is sorted according to the defining coordinate and the other coordinate is sorted as well.
If either the space did not have the “weaker coordinate” (e.g. both have observables, but only coords
has axes), then the resulting Space will have both.
If both have both coordinates, obs and axes, and sorting for obs results in non-matchin axes results
in axes being dropped.

	Parameters
		coords (ZfitOrderableDimensional) – An instance of Coordinates

	allow_superset (bool) – If false and a strict superset is given, an error is raised

	allow_subset (bool) – If false and a strict subset is given, an error is raised

	Returns
	

	Return type
	Space

	Raises
		CoordinatesUnderdefinedError – if neither both obs or axes are specified.

	CoordinatesIncompatibleError – if coords is a superset and allow_superset is False or a subset and
 allow_allow_subset is False

	
abstract __eq__(other)¶
	Compares two Limits for equality without graph mode allowed.
:raises IllegalInGraphModeError: it the comparison happens with tensors in a graph context.

	Return type
	bool

	
abstract __le__(other)¶
	Set-like comparison for compatibility. If an object is less_equal to another, the limits are combatible.

This can be used to determine whether a fitting range specification can handle another limit.

	Return type
	bool

	Returns
	Result of the comparison

	Raises
	IllegalInGraphModeError – it the comparison happens with tensors in a graph context.

	
abstract property axes¶
	Return the axes, integer based identifier(indices) for the coordinate system.

	Return type
	Optional[Tuple[int]]

	
abstract equal(other, allow_graph)¶
	Compare the limits on equality. For ANY objects, this also returns true.

If called inside a graph context and the limits are tensors, this will return a symbolic tf.Tensor.

	Return type
	Union[bool, Tensor]

	Returns
	Result of the comparison

	Raises
	IllegalInGraphModeError – it the comparison happens with tensors in a graph context.

	
abstract filter(x, guarantee_limits=False, axis=None)¶
	Filter x by removing the elements along axis that are not inside the limits.

This is similar to tf.boolean_mask.

	Parameters
		x (Union[ndarray, Tensor, Data]) – Values to be checked whether they are inside of the limits. If not, the corresonding element (in the
specified axis) is removed. The shape is expected to have the last dimension equal to n_obs.

	guarantee_limits (bool) – Guarantee that the values are already inside the rectangular limits.

	axis (Optional[int]) – The axis to remove the elements from. Defaults to 0.

	Return type
	Union[ndarray, Tensor]

	Returns
	
	Return an object with the same shape as x except that along axis elements have been
	removed.

	
abstract get_reorder_indices(obs=None, axes=None)¶
	Indices that would order the instances obs as obs respectively the instances axes as axes.

	Parameters
		obs (Union[str, Iterable[str], Space, None]) – Observables that the instances obs should be ordered to. Does not reorder, but just
return the indices that could be used to reorder.

	axes (Union[int, Iterable[int], None]) – Axes that the instances obs should be ordered to. Does not reorder, but just
return the indices that could be used to reorder.

	Return type
	Tuple[int]

	Returns
	New indices that would reorder the instances obs to be obs respectively axes.

	Raises
	CoordinatesUnderdefinedError – If neither obs nor axes is given

	
abstract get_sublimits()¶
	Splits itself into multiple sublimits with smaller n_obs.

If this is not possible, if the limits are not rectangular, just returns itself.

	Returns
	The sublimits if it was able to split.

	
abstract property has_limits¶
	Whether there are limits set and they are not false.

	Return type
	bool

	
abstract property has_rect_limits¶
	If there are limits and whether they are rectangular.

	Return type
	bool

	
abstract inside(x, guarantee_limits=False)¶
	Test if x is inside the limits.

This function should be used to test if values are inside the limits. If the given x is already inside
the rectangular limits, e.g. because it was sampled from within them

	Parameters
		x (Union[ndarray, Tensor, Data]) – Values to be checked whether they are inside of the limits. The shape is expected to have the last
dimension equal to n_obs.

	guarantee_limits (bool) – Guarantee that the values are already inside the rectangular limits.

	Return type
	Union[ndarray, Tensor, Data]

	Returns
	
	Return a boolean tensor-like object with the same shape as the input x except of the
	last dimension removed.

	
abstract less_equal(other, allow_graph=True)¶
	Set-like comparison for compatibility. If an object is less_equal to another, the limits are combatible.

This can be used to determine whether a fitting range specification can handle another limit.

If called inside a graph context and the limits are tensors, this will return a symbolic tf.Tensor.

	Parameters
		other (object) – Any other object to compare with

	allow_graph (bool) – If False and the function returns a symbolic tensor, raise IllegalInGraphModeError instead.

	Return type
	Union[bool, Tensor]

	Returns
	Result of the comparison

	Raises
	IllegalInGraphModeError – it the comparison happens with tensors in a graph context.

	
abstract property limits_are_false¶
	Returns if the limits have been set to False, so the object on purpose does not contain limits.

	Return type
	bool

	
abstract property limits_are_set¶
	If the limits have been set to a limit or are False.

	Return type
	bool

	Returns
	Whether the limits have been set or not.

	
property n_events¶
	Shape of the first dimension, usually reflects the number of events.

	Return type
	Optional[int]

	Returns
	
	Return the number of events, the dimension of the first shape. If this is > 1 or None,
	it’s vectorized.

	
abstract property n_obs¶
	Dimensionality, the number of observables, of the limits. Equals to the last axis in rectangular limits.

	Return type
	int

	Returns
	Dimensionality of the limits.

	
abstract property obs¶
	Return the observables, string identifier for the coordinate system.

	Return type
	Optional[Tuple[str, …]]

	
abstract rect_area()¶
	Calculate the total rectangular area of all the limits and axes. Useful, for example, for MC integration.

	Return type
	Union[float, ndarray, Tensor]

	
abstract property rect_limits¶
	Return the rectangular limits as np.ndarray``tf.Tensor if they are set and not false.

The rectangular limits can be used for sampling. They do not in general represent the limits
of the object as a functional limit can be set and to check if something is inside the limits,
the method inside() should be used.

In order to test if the limits are False or None, it is recommended to use the appropriate methods
limits_are_false and limits_are_set.

	Return type
	Tuple[Union[ndarray, Tensor, float], Union[ndarray, Tensor, float]]

	Returns
	The lower and upper limits.

	Raises
	LimitsNotSpecifiedError – If there are not limits set or they are False.

	
property rect_limits_are_tensors¶
	Return True if the rectangular limits are tensors.

If a limit with tensors is evaluated inside a graph context, comparison operations will fail.

	Return type
	bool

	Returns
	If the rectangular limits are tensors.

	
abstract property rect_limits_np¶
	Return the rectangular limits as np.ndarray. Raise error if not possible.

Rectangular limits are returned as numpy arrays which can be useful when doing checks that do not
need to be involved in the computation later on as they allow direct interaction with Python as
compared to tf.Tensor inside a graph function.

In order to test if the limits are False or None, it is recommended to use the appropriate methods
limits_are_false and limits_are_set.

	Return type
	Tuple[ndarray, ndarray]

	Returns
	
	A tuple of two np.ndarray with shape (1, n_obs) typically. The last
	dimension is always n_obs, the first can be vectorized. This allows unstacking
with z.unstack_x() as can be done with data.

	Raises
		CannotConvertToNumpyError – In case the conversion fails.

	LimitsNotSpecifiedError – If the limits are not set or are false

	
abstract property rect_lower¶
	The lower, rectangular limits, equivalent to rect_limits[0] with shape (…, n_obs)

	Return type
	Union[ndarray, Tensor, float]

	Returns
	The lower, rectangular limits as np.ndarray or tf.Tensor

	Raises
	LimitsNotSpecifiedError – If the limits are not set or are false

	
abstract property rect_upper¶
	The upper, rectangular limits, equivalent to rect_limits[1] with shape (…, n_obs)

	Return type
	Union[ndarray, Tensor, float]

	Returns
	The upper, rectangular limits as np.ndarray or tf.Tensor

	Raises
	LimitsNotSpecifiedError – If the limits are not set or are false

	
abstract reorder_x(x, *, x_obs=None, x_axes=None, func_obs=None, func_axes=None)¶
	Reorder x in the last dimension either according to its own obs or assuming a function ordered with func_obs.

There are two obs or axes around: the one associated with this Coordinate object and the one associated with x.
If x_obs or x_axes is given, then this is assumed to be the obs resp. the axes of x and x will be reordered
according to self.obs resp. self.axes.

If func_obs resp. func_axes is given, then x is assumed to have self.obs resp. self.axes and will be
reordered to align with a function ordered with func_obs resp. func_axes.

Switching func_obs for x_obs resp. func_axes for x_axes inverts the reordering of x.

	Parameters
		x (Union[Tensor, ndarray]) – Tensor to be reordered, last dimension should be n_obs resp. n_axes

	x_obs (Union[str, Iterable[str], Space, None]) – Observables associated with x. If both, x_obs and x_axes are given, this has precedency over the
latter.

	x_axes (Union[int, Iterable[int], None]) – Axes associated with x.

	func_obs (Union[str, Iterable[str], Space, None]) – Observables associated with a function that x will be given to. Reorders x accordingly and assumes
self.obs to be the obs of x. If both, func_obs and func_axes are given, this has precedency over the
latter.

	func_axes (Union[int, Iterable[int], None]) – Axe associated with a function that x will be given to. Reorders x accordingly and assumes
self.axes to be the axes of x.

	Return type
	Union[ndarray, Tensor]

	Returns
	The reordered array-like object

	
abstract with_autofill_axes(overwrite=False)¶
	Overwrite the axes of the current object with axes corresponding to range(len(n_obs)).

This effectively fills with (0, 1, 2,…) and can be used mostly when an object enters a PDF or
similar. overwrite allows to remove the axis first in case there are already some set.

object.obs -> ('x', 'z', 'y')
object.axes -> None

object.with_autofill_axes()

object.obs -> ('x', 'z', 'y')
object.axes -> (0, 1, 2)

	Parameters
	overwrite (bool) – If axes are already set, replace the axes with the autofilled ones.
If axes is already set and overwrite is False, raise an error.

	Return type
	ZfitOrderableDimensional

	Returns
	The object with the new axes

	Raises
	AxesIncompatibleError – if the axes are already set and overwrite is False.

	
abstract with_axes(axes, allow_superset=True, allow_subset=True)¶
	Create a new instance that has axes; sorted by or set or dropped.

The behavior is as follows:

	axes are already set:
* input axes are None: the axes will be dropped. If no observables are set, an error

will be raised, as no coordinates will be assigned to this instance anymore.

	input axes are not None: the instance will be sorted by the incoming axes. If obs or other
objects have an associated order (e.g. data, limits,…), they will be reordered as well.
If a strict subset is given (and allow_subset is True), only a subset will be returned. This can
be used to retrieve a subspace of limits, data etc.
If a strict superset is given (and allow_superset is True), the axes will be sorted accordingly as
if the axes not contained in the instances axes were not present in the input axes.

	axes are not set:
* if the input axes are None, the same object is returned.
* if the input axes are not None, they will be set as-is and now correspond to the already

existing obs in the object.

	Parameters
		axes (Union[int, Iterable[int], None]) – Axes to sort/associate this instance with

	allow_superset (bool) – if False and a strict superset of the own axeservables is given, an error

	raised. (is) –

	allow_subset (bool) – if False and a strict subset of the own axeservables is given, an error

	raised. –

	Return type
	ZfitOrderableDimensional

	Returns
	A copy of the object with the new ordering/axes

	Raises
		CoordinatesUnderdefinedError – if obs is None and the instance does not have axes

	AxesIncompatibleError – if axes is a superset and allow_superset is False or a subset and
 allow_allow_subset is False

	
abstract with_obs(obs, allow_superset=True, allow_subset=True)¶
	Create a new instance that has obs; sorted by or set or dropped.

The behavior is as follows:

	obs are already set:
* input obs are None: the observables will be dropped. If no axes are set, an error

will be raised, as no coordinates will be assigned to this instance anymore.

	input obs are not None: the instance will be sorted by the incoming obs. If axes or other
objects have an associated order (e.g. data, limits,…), they will be reordered as well.
If a strict subset is given (and allow_subset is True), only a subset will be returned.
This can be used to take a subspace of limits, data etc.
If a strict superset is given (and allow_superset is True), the obs will be sorted accordingly as
if the obs not contained in the instances obs were not in the input obs.

	obs are not set:
* if the input obs are None, the same object is returned.
* if the input obs are not None, they will be set as-is and now correspond to the already

existing axes in the object.

	Parameters
		obs (Union[str, Iterable[str], Space, None]) – Observables to sort/associate this instance with

	allow_superset (bool) – if False and a strict superset of the own observables is given, an error

	raised. (is) –

	allow_subset (bool) – if False and a strict subset of the own observables is given, an error

	raised. –

	Return type
	ZfitOrderableDimensional

	Returns
	A copy of the object with the new ordering/observables

	Raises
		CoordinatesUnderdefinedError – if obs is None and the instance does not have axes

	ObsIncompatibleError – if obs is a superset and allow_superset is False or a subset and
 allow_allow_subset is False

	
class zfit.core.interfaces.ZfitDependenciesMixin[source]¶
	Bases: object

	
abstract get_cache_deps(only_floating=True)[source]¶
		Return type
	OrderedSet

	
get_dependencies(only_floating=True)[source]¶
	DEPRECATED FUNCTION

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version.
Instructions for updating:
Use get_params instead if you want to retrieve the independent parameters or get_cache_deps in case you need the numerical cache dependents (advanced).

	Return type
	OrderedSet

	
class zfit.core.interfaces.ZfitParametrized[source]¶
	Bases: zfit.core.interfaces.ZfitDependenciesMixin, zfit.core.interfaces.ZfitObject

	
abstract get_params(floating=True, is_yield=None, extract_independent=True)[source]¶
	Recursively collect parameters that this object depends on according to the filter criteria.

	Which parameters should be included can be steered using the arguments as a filter.
			None: do not filter on this. E.g. floating=None will return parameters that are floating as well as
	parameters that are fixed.

	True: only return parameters that fulfil this criterion

		False: only return parameters that do not fulfil this criterion. E.g. floating=False will return
	only parameters that are not floating.

	Parameters
		floating (Optional[bool]) – if a parameter is floating, e.g. if floating() returns True

	is_yield (Optional[bool]) – if a parameter is a yield of the _current_ model. This won’t be applied recursively, but may include
yields if they do also represent a parameter parametrizing the shape. So if the yield of the current
model depends on other yields (or also non-yields), this will be included. If, however, just submodels
depend on a yield (as their yield) and it is not correlated to the output of our model, they won’t be
included.

	extract_independent (Optional[bool]) – If the parameter is an independent parameter, i.e. if it is a ZfitIndependentParameter.

	Return type
	Set[ZfitParameter]

	
abstract property params¶
		Return type
	~ParametersType

	
abstract get_cache_deps(only_floating=True)¶
		Return type
	OrderedSet

	
get_dependencies(only_floating=True)¶
	DEPRECATED FUNCTION

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version.
Instructions for updating:
Use get_params instead if you want to retrieve the independent parameters or get_cache_deps in case you need the numerical cache dependents (advanced).

	Return type
	OrderedSet

	
class zfit.core.interfaces.ZfitNumericParametrized[source]¶
	Bases: zfit.core.interfaces.ZfitParametrized

	
abstract property dtype¶
	The DType of Tensor`s handled by this `model.

	Return type
	DType

	
abstract get_cache_deps(only_floating=True)¶
		Return type
	OrderedSet

	
get_dependencies(only_floating=True)¶
	DEPRECATED FUNCTION

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version.
Instructions for updating:
Use get_params instead if you want to retrieve the independent parameters or get_cache_deps in case you need the numerical cache dependents (advanced).

	Return type
	OrderedSet

	
abstract get_params(floating=True, is_yield=None, extract_independent=True)¶
	Recursively collect parameters that this object depends on according to the filter criteria.

	Which parameters should be included can be steered using the arguments as a filter.
			None: do not filter on this. E.g. floating=None will return parameters that are floating as well as
	parameters that are fixed.

	True: only return parameters that fulfil this criterion

		False: only return parameters that do not fulfil this criterion. E.g. floating=False will return
	only parameters that are not floating.

	Parameters
		floating (Optional[bool]) – if a parameter is floating, e.g. if floating() returns True

	is_yield (Optional[bool]) – if a parameter is a yield of the _current_ model. This won’t be applied recursively, but may include
yields if they do also represent a parameter parametrizing the shape. So if the yield of the current
model depends on other yields (or also non-yields), this will be included. If, however, just submodels
depend on a yield (as their yield) and it is not correlated to the output of our model, they won’t be
included.

	extract_independent (Optional[bool]) – If the parameter is an independent parameter, i.e. if it is a ZfitIndependentParameter.

	Return type
	Set[ZfitParameter]

	
abstract property params¶
		Return type
	~ParametersType

	
class zfit.core.interfaces.ZfitParameter[source]¶
	Bases: zfit.core.interfaces.ZfitNumericParametrized

	
abstract property name¶
		Return type
	str

	
abstract property shape¶
	

	
abstract property floating¶
		Return type
	bool

	
abstract value()[source]¶
		Return type
	Tensor

	
abstract read_value()[source]¶
		Return type
	Tensor

	
abstract property independent¶
		Return type
	bool

	
abstract property dtype¶
	The DType of Tensor`s handled by this `model.

	Return type
	DType

	
abstract get_cache_deps(only_floating=True)¶
		Return type
	OrderedSet

	
get_dependencies(only_floating=True)¶
	DEPRECATED FUNCTION

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version.
Instructions for updating:
Use get_params instead if you want to retrieve the independent parameters or get_cache_deps in case you need the numerical cache dependents (advanced).

	Return type
	OrderedSet

	
abstract get_params(floating=True, is_yield=None, extract_independent=True)¶
	Recursively collect parameters that this object depends on according to the filter criteria.

	Which parameters should be included can be steered using the arguments as a filter.
			None: do not filter on this. E.g. floating=None will return parameters that are floating as well as
	parameters that are fixed.

	True: only return parameters that fulfil this criterion

		False: only return parameters that do not fulfil this criterion. E.g. floating=False will return
	only parameters that are not floating.

	Parameters
		floating (Optional[bool]) – if a parameter is floating, e.g. if floating() returns True

	is_yield (Optional[bool]) – if a parameter is a yield of the _current_ model. This won’t be applied recursively, but may include
yields if they do also represent a parameter parametrizing the shape. So if the yield of the current
model depends on other yields (or also non-yields), this will be included. If, however, just submodels
depend on a yield (as their yield) and it is not correlated to the output of our model, they won’t be
included.

	extract_independent (Optional[bool]) – If the parameter is an independent parameter, i.e. if it is a ZfitIndependentParameter.

	Return type
	Set[ZfitParameter]

	
abstract property params¶
		Return type
	~ParametersType

	
class zfit.core.interfaces.ZfitIndependentParameter[source]¶
	Bases: zfit.core.interfaces.ZfitParameter

	
abstract randomize(minval, maxval, sampler)[source]¶
	Update the parameter with a randomised value between minval and maxval and return it.

	Parameters
		minval – The lower bound of the sampler. If not given, lower_limit is used.

	maxval – The upper bound of the sampler. If not given, upper_limit is used.

	sampler – A sampler with the same interface as tf.random.uniform

	Returns
	The sampled value

	
abstract set_value(value)[source]¶
	Set the Parameter to value (temporarily if used in a context manager).

This operation won’t, compared to the assign, return the read value but an object that can act as a context
manager.

	Parameters
	value – The value the parameter will take on.

	
abstract property has_limits¶
	If the parameter has limits set or not.

	Return type
	bool

	
abstract property at_limit¶
	If the value is at the limit (or over it).

	Return type
	Tensor

	Returns
	Boolean tf.Tensor that tells whether the value is at the limits.

	
property step_size¶
	Step size of the parameter, the estimated order of magnitude of the uncertainty.

This can be crucial to tune for the minimization. A too large step_size can produce NaNs, a too small won’t
converge.

If the step size is not set, the DEFAULT_STEP_SIZE is used.

	Return type
	Tensor

	Returns
	The step size

	
abstract property dtype¶
	The DType of Tensor`s handled by this `model.

	Return type
	DType

	
abstract property floating¶
		Return type
	bool

	
abstract get_cache_deps(only_floating=True)¶
		Return type
	OrderedSet

	
get_dependencies(only_floating=True)¶
	DEPRECATED FUNCTION

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version.
Instructions for updating:
Use get_params instead if you want to retrieve the independent parameters or get_cache_deps in case you need the numerical cache dependents (advanced).

	Return type
	OrderedSet

	
abstract get_params(floating=True, is_yield=None, extract_independent=True)¶
	Recursively collect parameters that this object depends on according to the filter criteria.

	Which parameters should be included can be steered using the arguments as a filter.
			None: do not filter on this. E.g. floating=None will return parameters that are floating as well as
	parameters that are fixed.

	True: only return parameters that fulfil this criterion

		False: only return parameters that do not fulfil this criterion. E.g. floating=False will return
	only parameters that are not floating.

	Parameters
		floating (Optional[bool]) – if a parameter is floating, e.g. if floating() returns True

	is_yield (Optional[bool]) – if a parameter is a yield of the _current_ model. This won’t be applied recursively, but may include
yields if they do also represent a parameter parametrizing the shape. So if the yield of the current
model depends on other yields (or also non-yields), this will be included. If, however, just submodels
depend on a yield (as their yield) and it is not correlated to the output of our model, they won’t be
included.

	extract_independent (Optional[bool]) – If the parameter is an independent parameter, i.e. if it is a ZfitIndependentParameter.

	Return type
	Set[ZfitParameter]

	
abstract property independent¶
		Return type
	bool

	
abstract property name¶
		Return type
	str

	
abstract property params¶
		Return type
	~ParametersType

	
abstract read_value()¶
		Return type
	Tensor

	
abstract property shape¶
	

	
abstract value()¶
		Return type
	Tensor

	
class zfit.core.interfaces.ZfitLoss[source]¶
	Bases: zfit.core.interfaces.ZfitObject

	
abstract gradients(params=None)[source]¶
		Return type
	List[Tensor]

	
abstract value()[source]¶
		Return type
	Union[Tensor, array]

	
abstract property model¶
		Return type
	List[ZfitModel]

	
abstract property data¶
		Return type
	List[ZfitData]

	
abstract property fit_range¶
		Return type
	List[ZfitSpace]

	
abstract add_constraints(constraints)[source]¶
	

	
abstract property errordef¶
		Return type
	float

	
abstract value_gradients(params)[source]¶
	

	
abstract value_gradients_hessian(params, hessian=None)[source]¶
	

	
class zfit.core.interfaces.ZfitModel[source]¶
	Bases: zfit.core.interfaces.ZfitNumericParametrized, zfit.core.interfaces.ZfitDimensional

	
abstract update_integration_options(*args, **kwargs)[source]¶
	

	
abstract integrate(limits, norm_range=None, name='integrate')[source]¶
	Integrate the function over limits (normalized over norm_range if not False).

	Parameters
		limits (Union[Tuple[Tuple[float, …]], Tuple[float, …], bool, Space]) – the limits to integrate over

	norm_range (Union[Tuple[Tuple[float, …]], Tuple[float, …], bool, Space, None]) – the limits to normalize over or False to integrate the
unnormalized probability

	name (str) –

	Return type
	Union[float, Tensor]

	Returns
	The integral value

	
abstract classmethod register_analytic_integral(func, limits=None, priority=50, *, supports_norm_range=False, supports_multiple_limits=False)[source]¶
	Register an analytic integral with the class.

	Parameters
		func (Callable) –

	limits (Union[Tuple[Tuple[float, …]], Tuple[float, …], bool, Space, None]) – If a :py:class:~`zfit.Space` is given, it is used as limits. Otherwise arguments to instantiate a Range class can be given as follows.|limits_init|

	priority (int) –

	supports_multiple_limits (bool) –

	supports_norm_range (bool) –

Returns:

	
abstract partial_integrate(x, limits, norm_range=None)[source]¶
	Partially integrate the function over the limits and evaluate it at x.

Dimension of limits and x have to add up to the full dimension and be therefore equal
to the dimensions of norm_range (if not False)

	Parameters
		x (Union[float, Tensor]) – The value at which the partially integrated function will be evaluated

	limits (Union[Tuple[Tuple[float, …]], Tuple[float, …], bool, Space]) – the limits to integrate over. Can contain only some axes

	norm_range (Union[Tuple[Tuple[float, …]], Tuple[float, …], bool, Space, None]) – the limits to normalize over. Has to have all axes

	Return type
	Union[float, Tensor]

	Returns
	The value of the partially integrated function evaluated at x.

	
abstract classmethod register_inverse_analytic_integral(func)[source]¶
	Register an inverse analytical integral, the inverse (unnormalized) cdf.

	Parameters
	func (Callable) –

	
abstract sample(n, limits=None)[source]¶
	Sample n points within limits from the model.

	Parameters
		n (int) – The number of samples to be generated

	limits (Union[Tuple[Tuple[float, …]], Tuple[float, …], bool, Space, None]) – In which region to sample in

	name –

	Return type
	Union[float, Tensor]

	Returns
	Tensor(n_obs, n_samples)

	
abstract property axes¶
	Return the axes, integer based identifier(indices) for the coordinate system.

	Return type
	Optional[Tuple[int]]

	
abstract property dtype¶
	The DType of Tensor`s handled by this `model.

	Return type
	DType

	
abstract get_cache_deps(only_floating=True)¶
		Return type
	OrderedSet

	
get_dependencies(only_floating=True)¶
	DEPRECATED FUNCTION

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version.
Instructions for updating:
Use get_params instead if you want to retrieve the independent parameters or get_cache_deps in case you need the numerical cache dependents (advanced).

	Return type
	OrderedSet

	
abstract get_params(floating=True, is_yield=None, extract_independent=True)¶
	Recursively collect parameters that this object depends on according to the filter criteria.

	Which parameters should be included can be steered using the arguments as a filter.
			None: do not filter on this. E.g. floating=None will return parameters that are floating as well as
	parameters that are fixed.

	True: only return parameters that fulfil this criterion

		False: only return parameters that do not fulfil this criterion. E.g. floating=False will return
	only parameters that are not floating.

	Parameters
		floating (Optional[bool]) – if a parameter is floating, e.g. if floating() returns True

	is_yield (Optional[bool]) – if a parameter is a yield of the _current_ model. This won’t be applied recursively, but may include
yields if they do also represent a parameter parametrizing the shape. So if the yield of the current
model depends on other yields (or also non-yields), this will be included. If, however, just submodels
depend on a yield (as their yield) and it is not correlated to the output of our model, they won’t be
included.

	extract_independent (Optional[bool]) – If the parameter is an independent parameter, i.e. if it is a ZfitIndependentParameter.

	Return type
	Set[ZfitParameter]

	
abstract property n_obs¶
	Return the number of observables, the dimensionality. Corresponds to the last dimension.

	Return type
	int

	
abstract property obs¶
	Return the observables, string identifier for the coordinate system.

	Return type
	Optional[Tuple[str, …]]

	
abstract property params¶
		Return type
	~ParametersType

	
class zfit.core.interfaces.ZfitFunc[source]¶
	Bases: zfit.core.interfaces.ZfitModel

	
abstract func(x, name='value')[source]¶
		Return type
	Union[float, Tensor]

	
abstract as_pdf()[source]¶
	

	
abstract property axes¶
	Return the axes, integer based identifier(indices) for the coordinate system.

	Return type
	Optional[Tuple[int]]

	
abstract property dtype¶
	The DType of Tensor`s handled by this `model.

	Return type
	DType

	
abstract get_cache_deps(only_floating=True)¶
		Return type
	OrderedSet

	
get_dependencies(only_floating=True)¶
	DEPRECATED FUNCTION

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version.
Instructions for updating:
Use get_params instead if you want to retrieve the independent parameters or get_cache_deps in case you need the numerical cache dependents (advanced).

	Return type
	OrderedSet

	
abstract get_params(floating=True, is_yield=None, extract_independent=True)¶
	Recursively collect parameters that this object depends on according to the filter criteria.

	Which parameters should be included can be steered using the arguments as a filter.
			None: do not filter on this. E.g. floating=None will return parameters that are floating as well as
	parameters that are fixed.

	True: only return parameters that fulfil this criterion

		False: only return parameters that do not fulfil this criterion. E.g. floating=False will return
	only parameters that are not floating.

	Parameters
		floating (Optional[bool]) – if a parameter is floating, e.g. if floating() returns True

	is_yield (Optional[bool]) – if a parameter is a yield of the _current_ model. This won’t be applied recursively, but may include
yields if they do also represent a parameter parametrizing the shape. So if the yield of the current
model depends on other yields (or also non-yields), this will be included. If, however, just submodels
depend on a yield (as their yield) and it is not correlated to the output of our model, they won’t be
included.

	extract_independent (Optional[bool]) – If the parameter is an independent parameter, i.e. if it is a ZfitIndependentParameter.

	Return type
	Set[ZfitParameter]

	
abstract integrate(limits, norm_range=None, name='integrate')¶
	Integrate the function over limits (normalized over norm_range if not False).

	Parameters
		limits (Union[Tuple[Tuple[float, …]], Tuple[float, …], bool, Space]) – the limits to integrate over

	norm_range (Union[Tuple[Tuple[float, …]], Tuple[float, …], bool, Space, None]) – the limits to normalize over or False to integrate the
unnormalized probability

	name (str) –

	Return type
	Union[float, Tensor]

	Returns
	The integral value

	
abstract property n_obs¶
	Return the number of observables, the dimensionality. Corresponds to the last dimension.

	Return type
	int

	
abstract property obs¶
	Return the observables, string identifier for the coordinate system.

	Return type
	Optional[Tuple[str, …]]

	
abstract property params¶
		Return type
	~ParametersType

	
abstract partial_integrate(x, limits, norm_range=None)¶
	Partially integrate the function over the limits and evaluate it at x.

Dimension of limits and x have to add up to the full dimension and be therefore equal
to the dimensions of norm_range (if not False)

	Parameters
		x (Union[float, Tensor]) – The value at which the partially integrated function will be evaluated

	limits (Union[Tuple[Tuple[float, …]], Tuple[float, …], bool, Space]) – the limits to integrate over. Can contain only some axes

	norm_range (Union[Tuple[Tuple[float, …]], Tuple[float, …], bool, Space, None]) – the limits to normalize over. Has to have all axes

	Return type
	Union[float, Tensor]

	Returns
	The value of the partially integrated function evaluated at x.

	
abstract classmethod register_analytic_integral(func, limits=None, priority=50, *, supports_norm_range=False, supports_multiple_limits=False)¶
	Register an analytic integral with the class.

	Parameters
		func (Callable) –

	limits (Union[Tuple[Tuple[float, …]], Tuple[float, …], bool, Space, None]) – If a :py:class:~`zfit.Space` is given, it is used as limits. Otherwise arguments to instantiate a Range class can be given as follows.|limits_init|

	priority (int) –

	supports_multiple_limits (bool) –

	supports_norm_range (bool) –

Returns:

	
abstract classmethod register_inverse_analytic_integral(func)¶
	Register an inverse analytical integral, the inverse (unnormalized) cdf.

	Parameters
	func (Callable) –

	
abstract sample(n, limits=None)¶
	Sample n points within limits from the model.

	Parameters
		n (int) – The number of samples to be generated

	limits (Union[Tuple[Tuple[float, …]], Tuple[float, …], bool, Space, None]) – In which region to sample in

	name –

	Return type
	Union[float, Tensor]

	Returns
	Tensor(n_obs, n_samples)

	
abstract update_integration_options(*args, **kwargs)¶
	

	
class zfit.core.interfaces.ZfitPDF[source]¶
	Bases: zfit.core.interfaces.ZfitModel

	
abstract pdf(x, norm_range=None)[source]¶
		Return type
	Union[float, Tensor]

	
abstract property is_extended¶
		Return type
	bool

	
abstract set_norm_range()[source]¶
	

	
abstract create_extended(yield_)[source]¶
		Return type
	ZfitPDF

	
abstract get_yield()[source]¶
		Return type
	Optional[ZfitParameter]

	
abstract normalization(limits)[source]¶
		Return type
	Union[Tensor, array]

	
abstract as_func(norm_range=False)[source]¶
	

	
abstract property axes¶
	Return the axes, integer based identifier(indices) for the coordinate system.

	Return type
	Optional[Tuple[int]]

	
abstract property dtype¶
	The DType of Tensor`s handled by this `model.

	Return type
	DType

	
abstract get_cache_deps(only_floating=True)¶
		Return type
	OrderedSet

	
get_dependencies(only_floating=True)¶
	DEPRECATED FUNCTION

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version.
Instructions for updating:
Use get_params instead if you want to retrieve the independent parameters or get_cache_deps in case you need the numerical cache dependents (advanced).

	Return type
	OrderedSet

	
abstract get_params(floating=True, is_yield=None, extract_independent=True)¶
	Recursively collect parameters that this object depends on according to the filter criteria.

	Which parameters should be included can be steered using the arguments as a filter.
			None: do not filter on this. E.g. floating=None will return parameters that are floating as well as
	parameters that are fixed.

	True: only return parameters that fulfil this criterion

		False: only return parameters that do not fulfil this criterion. E.g. floating=False will return
	only parameters that are not floating.

	Parameters
		floating (Optional[bool]) – if a parameter is floating, e.g. if floating() returns True

	is_yield (Optional[bool]) – if a parameter is a yield of the _current_ model. This won’t be applied recursively, but may include
yields if they do also represent a parameter parametrizing the shape. So if the yield of the current
model depends on other yields (or also non-yields), this will be included. If, however, just submodels
depend on a yield (as their yield) and it is not correlated to the output of our model, they won’t be
included.

	extract_independent (Optional[bool]) – If the parameter is an independent parameter, i.e. if it is a ZfitIndependentParameter.

	Return type
	Set[ZfitParameter]

	
abstract integrate(limits, norm_range=None, name='integrate')¶
	Integrate the function over limits (normalized over norm_range if not False).

	Parameters
		limits (Union[Tuple[Tuple[float, …]], Tuple[float, …], bool, Space]) – the limits to integrate over

	norm_range (Union[Tuple[Tuple[float, …]], Tuple[float, …], bool, Space, None]) – the limits to normalize over or False to integrate the
unnormalized probability

	name (str) –

	Return type
	Union[float, Tensor]

	Returns
	The integral value

	
abstract property n_obs¶
	Return the number of observables, the dimensionality. Corresponds to the last dimension.

	Return type
	int

	
abstract property obs¶
	Return the observables, string identifier for the coordinate system.

	Return type
	Optional[Tuple[str, …]]

	
abstract property params¶
		Return type
	~ParametersType

	
abstract partial_integrate(x, limits, norm_range=None)¶
	Partially integrate the function over the limits and evaluate it at x.

Dimension of limits and x have to add up to the full dimension and be therefore equal
to the dimensions of norm_range (if not False)

	Parameters
		x (Union[float, Tensor]) – The value at which the partially integrated function will be evaluated

	limits (Union[Tuple[Tuple[float, …]], Tuple[float, …], bool, Space]) – the limits to integrate over. Can contain only some axes

	norm_range (Union[Tuple[Tuple[float, …]], Tuple[float, …], bool, Space, None]) – the limits to normalize over. Has to have all axes

	Return type
	Union[float, Tensor]

	Returns
	The value of the partially integrated function evaluated at x.

	
abstract classmethod register_analytic_integral(func, limits=None, priority=50, *, supports_norm_range=False, supports_multiple_limits=False)¶
	Register an analytic integral with the class.

	Parameters
		func (Callable) –

	limits (Union[Tuple[Tuple[float, …]], Tuple[float, …], bool, Space, None]) – If a :py:class:~`zfit.Space` is given, it is used as limits. Otherwise arguments to instantiate a Range class can be given as follows.|limits_init|

	priority (int) –

	supports_multiple_limits (bool) –

	supports_norm_range (bool) –

Returns:

	
abstract classmethod register_inverse_analytic_integral(func)¶
	Register an inverse analytical integral, the inverse (unnormalized) cdf.

	Parameters
	func (Callable) –

	
abstract sample(n, limits=None)¶
	Sample n points within limits from the model.

	Parameters
		n (int) – The number of samples to be generated

	limits (Union[Tuple[Tuple[float, …]], Tuple[float, …], bool, Space, None]) – In which region to sample in

	name –

	Return type
	Union[float, Tensor]

	Returns
	Tensor(n_obs, n_samples)

	
abstract update_integration_options(*args, **kwargs)¶
	

	
class zfit.core.interfaces.ZfitFunctorMixin[source]¶
	Bases: object

	
abstract property models¶
		Return type
	Dict[Union[float, int, str], ZfitModel]

	
abstract get_models()[source]¶
		Return type
	List[ZfitModel]

	
class zfit.core.interfaces.ZfitConstraint[source]¶
	Bases: abc.ABC

	
abstract value()[source]¶
	

 © Copyright Copyright 2018, zfit.

 Created using Sphinx 3.3.0.

